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A solution has been found for the transient behaviour of resonant growing 
standing waves by using a perturbation expansion. Comparison with laboratory 
experiments as well as a numerical nonlinear solution of the same problem leads 
to the conclusion that: (i) the transient behaviour and the nonlinear tendency 
of the standing waves are described well by the analytic expression; (ii) the 
numerical results describe the solution very well until the wave starts to break; 
(iii) from the laboratory experiments and the numerical results, the standing 
internal gravity waves break owing to local gravitational instability at  a critical 
amplitude which is similar to the one predicted by the expansion theory; (iv) the 
critical amplitude seems to be the maximum amplitude that a wave can reach; 
(v) when the generation of turbulence is violent, the small eddies begin forcing 
a secondary flow characterized by layers of strong jets separated by patches of 
turbulence. 

1. Introduction 
The importance of the breaking of internal gravity waves as a mechanism for 

generating turbulence in a stable stratified medium in the atmosphere and in 
the ocean was pointed out by Phillips (1966, ch. 5). He suggested that a 
Kelvin-Helmholtz instability is produced by the local shear of a slowly time- 
varying, finite amplitude internal gravity wave. On the other hand, Orlanski & 
Bryan (1969) have proposed another possible mechanism for generating 
turbulence and mixing. They suggested that a nonlinear effect such as the 
horizontal advection of density causes locally unstable density gradients. This 
effect, produced by the wave motion, is a common characteristic of growing 
waves. 

To avoid the difficulty of making a controlled laboratory experiment with 
propagating waves, the author decided to examine a similar process, namely, 
the breaking of standing internal gravity waves. Waves forced to grow by a 
resonant process can develop large amplitudes, so the possibility of obtaining 
both types of instability existed since the waves had very low frequency and 
small growth rate. Some evidence of the mechanism of breaking standing waves 
has been previously mentioned by Thorpe (1968). However, he looked at inter- 
face waves and the cause of the breaking in his experiment was not quite clear. 

The next three sections of this paper describe the governing equations, the 
initial-value problem and the second-order interactions. Section 5 will describe 
the experiment and the results, while $56 and 7 are devoted to a discussion 
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of the breaking of standing waves and the damping effect on free standing waves, 
respectively. 

2. Description of the model 
Let us consider a two-dimensional container of length L and height H filled 

with a linearly stratified fluid of density p = po( 1 +/3z). The motion of the fluid 
is forced by means of an oscillatory paddle at  the top of the receptacle. The 
equations describing the flow are 

8V 1 
-+v .VV = --Vp-kgp'+VV2V, 
at Po 

a p p t  + v . vp' + pw = KV~P', 

v . v  = 0,  

where v is the velocity vector with components u and w in the x and x directions 
respectively; p' is the density departure from p divided by po: p' = (p-i j ) /po. 
K and v are the molecular conductivity and molecular viscosity respectively, 
and k is the unit vector in the vertical direction. 

The two-dimensionality of the motion allows some simplification of equations 
(2.1)-(2.3). The vorticity equation can be obtained by taking the curl of (2.1) 
and, using the conditions of (2.3), the velocity as well as the vorticity may be 
described by means of a stream function $; equations (2.1)-(2.3) are then re- 
duced to the following: 

6t - J ( @ ,  6 )  = gpj. + VV", 

p; - J($,  P' )  = P $ X  i- KV2P', 

(2.4) 

6 = VZ@, ( 2 . 5 )  

(2.6) 

where u = @3 and w = - $x. 

Boundary eond,itions 

For simplicity, free slip boundary conditions are used. At the side walls x = 0, L, 
$ = 0 and 6 = 0, and a t  x = $ = 0, 6 = 0. In  order to simulate the oscillatory 
paddle at  x = H a condition is specified for the stream function, say 

$(z = H )  = Po sin kx sin mot. 

The adiabatic condition (ap/an = 0 at  the walls) was used for the density. To 
complete the set of equations, we fixed the initial conditions: 

$ = p ' = 0  at t = 0 .  (2.7) 

Two important parameters in (2.1)-(2.6) are N = ( -gp)* ,  the Brunt-Vaisala 
frequency, and H ,  the depth of the container. Using these two parameters we 
non-dimensionalize the variables in the following way : 

x = x / H ,  5 = Z/H, t = T N ,  1 = L / H ,  

4 = $/NH2, 0 = (g /N2H)p ' ,  f o  = &/NH2, w = oo/iV. 
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Then, rewriting (2.4)-(2.6) together with the boundary and initial conditions, 
we have 

(2.8) 

(2.9) 

where Re = NH2/v  is the Reynolds number and Pr = V / K  is the Prandtl number, 

(2.10) 

V2$, - J($ ,  V2#) = 0, + (l/Re) V2V2$, 

0, - *I($ ,  0 )  = - $, + ( l / R e P r )  V20,  

$ b =  @,= 0 at X = O , E ,  

$ b = @ , = O  at c = O ,  

$ = fo sin (mr/l) x sin wt at z = 1, 

and the initial condition 
$ = 0 = 0  a t  t = 0 .  (2.11) 

The full nonlinear system (2.8)-(2.11) was solved by numerical integration 
and will be discussed in a later section. In  the next section we shall solve the 
first two orders of the solution by perturbation techniques. 

3. Initial-value problem 
In  order to solve the system ( 1  3)-( 1.11) by expanding the solution in powers 

of a small parameter fo 4 1, say, we shall assume that the fluid is inviscid, i.e. 
Re + 00. As will be shown later, this is not a strong assumption since the charac- 
teristic values of Re and Pr in the experiments are 2 x 105 and 5 x lo2 respectively. 

Writing the stream function and density in powers of ,fo yields 

$ = f o  $1 +x $2 + O(f% 

0 = fo 0, +.fg 0, + O(fi). 

V2$,, = elx, 
01, = -$,x, 

The inviscid forms of (2.8) and (2.9) to first order are 

with boundary conditions 
$1 = 0 a t  x = O , l ,  

(3.3) 

(3.4) 

(3.5a) 

q5, = 0 at c =  0, (3.5b) 

= sin (mr/Z) x sin wt at 6 = 1, ( 3 . 5 4  

$, = 0, = 0 at  t = 0. (3.6) 
and initial conditions 

The term 0, is eliminated from (3.3) and (3.4) by differentiating (3.3) with respect 
to t and (3.4) with respect to x, yielding 

V2$m = - $lxx* (3-7) 

The Laplace transform of $1 is defined as 
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Then, noticing that (3.3) and (3.6) imply that Q1 and VZQ, are zero at t = 0, we 
may rewrite (3.7) as follows: 

A solution of this equation that satisfies (3.5a) and (3.5b) is 

s v $  = - $xx. (3.9) 

where 

At the boundary < = 1, $ = sin- y ( s 2 ; w 2 )  - * 

(3.10) 

(3.11) 

Note that the term w/(s2 + 0 2 )  is the Laplace transform of the forcing function. 

and the amplitude, which is 
Substitution of (3.10) into (3.1 1) determines the horizontal wavenumber p = m 

go0(s) = w/(s2+u2)sinhy(s). (3.12) 

The inverse Laplace transform of (3.10) will give the time-dependent solution 
of the stream function: 

(3.13) 

We shall not give the details for evaluating the integral here since the procedure 
is standard for this kind of problem; we shall only mention that the character of 
the poles of the integral (single or double) will describe the type of solution for Q 
(non-resonant or resonant). The roots si of sinhy(s,) = 0 give the contribution 
to  the internal gravity waves and the roots of s2 + w2 = 0 give the forcing solution. 
Now, if any of the si is equal to 2 iw ,  the integrand of (3.13) has only single poles 
and the solution will be a superposition of the normal modes into which the 
forcing function was decomposed. I n  such case the non-resonant solution is 

(3.14) 
mn sin75 mn- dl = sin-xsinwt-+ I: a,sinqn~sinw,tsin-X, 

1 siny p=l 1 

where 

the frequency w, is given by 
y = (mn-/Z) ( 1  - w)+, 

and the Fourier coefficients for the free mode by 

The first part of the right-hand side of (3.14) is the forcing term and the second 
part represents the free modes that help the solution to satisfy the initial con- 
dition 

V2& = 0 a t  t = 0. 
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The density field, from (3.4), is 

(mn/Z) sin yc mn mn mn 0, = -- cos-x cos wt + - cos - x 5 sin qngcos wq t (3.15) 
w siny 1 1 1 q=1wq 

with the aq defined as before. 0, satisfies the initial condition 0, = 0 at t = 0. 

Resonant wave 

Resonance occurs when one of the si is equal to the forcing frequency + i w ;  
then the integral has a double pole and the solution is of the form 

wt sin nnc cos wt sin - x 1 7  $1 = ( -  l)n(ccosnrrcsinwt- mn 

(nn)2 + ( r n ~ / l ) ~  
mrr m + C b,sinqn{sinw,tsin-x, (3.16) 

g = l  1 

where n = (mn/Z) (1  - w2)4/w is an integer and 

b, = 
nn 

for q = n. 
2n7r ( n ~ ) ~  + ( ? Y L ~ ~ / Z ) ~  

The first-order density perturbation field is given by 

nn 
(nrr)2 + (mn/Z)2 

+ 
mrr b mrr + - -q cos w,t sin qrrccos - x. 

1 q=1wq 1 
(3.17) 

Note that the terms in the stream function (3.16) completely satisfy the initial 
condition. The free modes are excited only to adjust the density field to zero at  
the initial time. We may also notice that there is a leading term which is pro- 
portional to t and out of phase with the forcing function; this term will grow 
linearly in time until nonlinear effects become important. Only this part of the 
solution will be considered in the calculation of the second-order effect. 

4. Second-order interaction 
By expanding (2.8)-(2.9) to the second order we obtain 

v2 $2 t  - 0 2 ,  = + J($1, V2$,), 

0 2 t  + 0 2 ,  = J(A,  @A 
and the boundary conditions (2.10) to second order are 

$2 = 0 at x = O , l ,  

$ 2 = 0  at 6 = 0 , 1 .  
(4.3) 
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Since the boundary conditions of (2.10) are sinusoidal in x and completely satisfy 
the first-order solution, the excitation of the second-order terms will be through 
the interior flow, owing to the interaction of the first-order terms, and not a result 
of conditions a t  the boundary. (This is not quite true in the experiment however. 
Since our paddle is not sinusoidal, the Fourier coefficients of the paddle forcing 
function are proportional to (l/rnn)2 for rn = 2,6,10, ... and zero for any other 
value. The paddle amplitude is then xo cos 2nx + Qxo cos 6nx + . . . . It seems quite 
justifiable to assume that the first term of the Fourier expansion is the most 
important since the amplitudes of the higher components are very small and 
also because the paddle’s oscillation corresponds to resonant frequencies for 
wavenumber 1, which means that the other wavenumbers will not be sufficiently 
excited. ) 

The initial conditions, as before, are 

q52 = 0, = 0 a t  t = 0. (4.4) 

The Jacobians J(q5,, V2q5,) and J (& 0,) can be computed directly from (3.15) 
and (3.16). Without loosing generality we may simplify the expression for each 
Jacobian by using only the leading terms from the stream function and density, 
which is mainly the interaction of the linear growing solution from (3.15) and 
(3.16)) since these will be the predominant parts after a few periods of oscillation. 

In such a case, the first-order vorticity is a function of the stream function and, 
therefore, J(q5,, V2q5J is zero. However, it is not so for the density, the Jacobian 
being given by 

Since this Jacobian is not a function of x, a simple solution can be found through 
a time integration of (4.2) for the second-order correction: 

+&os 2wt) sin 2nnC- isin 2nnc]. (4.6) 

The expression in square brackets results from integrating the Jacobian (4.5). 
Notice, however, that this term does not satisfy the initial conditions. In  order 
to do so, a function of 5 (the last term in the brackets) is subtracted. This term is 
also a solution of the second-order system. 

So, the dimensional stream function and density perturbation to the second 
order for the resonant case are 

sin - cos wo t 1~. = ~o( ( - l )n [~coszzs inwot -  nn 
nnwo t 

H2[(nn/H)2 + ( ~ n n / L ) ~ ]  H 

+ 2 - b, -sin-zsinw,t 9n 
,=if€ H 
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and 
- 

nn- 
pr = (- (y)  Po [ ( - 1)" (&o COS- H z COS wot 

PO 

(wo t sin wo t + cos wo t )  sin - z H 
1 nn/H 

H [ ( ~ T / H ) ~  + ( r n ~ / - L ) ~ ]  wo 
f- 

mn Fi (m7r/L)2 (nn/H)3 W + c b, coswqtsinEz cos-x-- 
q = l  Hw, L ] L 8H2wg [ ( rn~ /L)~  + (nn/H)Z]a 

x [ ( ~ ~ t ) ~  cos 2w0t - wot sin 2wo t - (4 cos 20, t - i)] sin 2 
H 

The experiment and the comparison between the experimental results and 
the expressions shown here will be described in the next section. 

5. Description of the experiment 
The apparatus used in the experiment (see figure 1, plate 1) consists of a 

rectangular tank (a )  (87.5 cm deep, 150 cm long and 30 cm wide) which is en- 
tirely made of Perspex. At the top of the tank are two paddles (b) ,  each of which 
pivot at a distance equal to a quarter of the length of the tank. The join between 
the paddles, which is made of rubber, is connected through a scotch yoke to 
a motorized variable-speed transmitter ( c ) .  Consequently, the paddles will have 
a rhythmic oscillation such that the frequency can be controlled by the motor's 
speed and the amplitude can be controlled by the centre of the arm. A counter 
automatically recorded the number of paddle oscillations. 

The fluid in each experiment was a solution of salt and water, linearly stratified 
with height. The profile was achieved by filling the tank very slowly with a brine 
solution which came from mixing the fluids of both containers (marked (d )  in 
figure 1).  The container on the left is filled with a brine solution which is at  the 
density desired at  the bottom of the tank (a);  the one on the right was filled with 
water. A description of the method will not be given here since it is well docu- 
mented in Fortuin (1960). A piece of tubing connects the receiver ( e )  with the 
system (a)-(d) in such a manner that a dye can be added to the solution a t  any 
time to aid visualization of a specific layer. 

Density measurements were made by two different methods: (if using conduc- 
tivity probes and (ii) using small pieces of glass. In  the first method different types 
of probes were used, but they were mostly of the exposed electrode type, such 
as that shown at (h) in figure 1. The probe is a multi-electrode type with four 
channels to measure the time variation of density at  four different levels. The 
probe was connected to a multichannel bridge system and a graph which recorded 
the signals. To measure the mean profile, a two-electrode probe was used. The 
probe was moved vertically in the fluid by a motorized device (f), thus giving 
direct measurements (about 60 over a 70cm height) of the mean profile. The 
conductivity reading was made with a conductivity probe (YSI model 31, 
accuracy k 1 %) and an ax.  bridge (9). 

In  the other method, eight different coloured pieces of glass were used for 
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FIGURE 2. The maximum disturbance amplitude normalized by the forcing 
amplitude versus the normalized paddle period. 

a quick check and as a control calibration for the conductive probes. The pieces 
were 0.3 cm in diameter and the precision was about Ap/p = 10-3. 

Measurement of forced response vs. frequency 

In  order to find the standing resonant waves we proceeded in the following 
manner. First, the density profile was measured; second, the Brunt-Vaisala 
frequency, i.e. N = ( -gjiJp0)*, was computed; third, the period of the chosen 
vertical wavenumber was estimated and fourth, the probes were fixed at the 
levels where the maximum density disturbances would occur. 

After these steps had been completed, different cases were tested by varying 
the frequency of the paddle near the estimated resonance value. Some of the 
results are shown in figure 2,  in which the maximum amplitude of the disturbance, 
normalized by the amplitude of the paddle, is plotted against the period of the 
paddle, normalized by the Brunt-V&isala frequency. The dots fall in peaks 
corresponding to vertical wavenumbers n = 3, 4, 5 ,  6 and 7 respectively. The 
dashed curves are obtained from the analytic expression of (3.15) for the non- 
resonant case. The infinite series for the free mode was approximated by con- 
sidering only the first 20 modes. The graph shows that the f i s t  three peaks are 
in good agreement with the data, i.e. those for n = 3,4 ,  and 5, whereas the lack 
of such consistency for .n = 6 and 7 is most likely due to an error in the level of 
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Experiment 

I I1 I11 IV v VI  VII  VII I  IX x XI XI1 
0.653 0.663 0.6487 0.6562 0.598 0.6031 0.602 0.725 0.730 0.692 0.688 0.720 

A 
7 -7 

N ( 5 - l )  
Test no. 

1 52.5 73-44 44-0 36-5 48.5 
2 50.75 80.0 42.5 34.2 51.2 
3 50.5 70.0 41.0 32.5 49.9 
4 49.0 68.0 39.9 32.0 49.5 
5 49.0 72.5 40.0 31.0 51.0 
6 48.0 65.5 37.8 - 49.8 
7 51.0 62-5 - - 51.0 
8 47.5 62.5 - - 51.5 

58.5 - 9 
57.5 - 10 
55.0 - 11 

12 

- - - 
- - - 
- - - 

- - - - -  

47.0 28-5 41.0 40.4 40.0 47.0 
51.5 32.2 41.0 42.2 43.0 49.0 
51.6 33.0 41.0 41.9 41.9 46.0 
51.0 33.2 41.1 43.1 43.6 45.5 
31.0 33.1 41.0 43.2 43.9 - 
41.0 32.8 41.0 43.3 45.0 - 
41.0 33.0 60.2 44.1 45.0 - 

33.8 - 44.0 - - 
34.0 - 43.5 - - 
33.0 - 44.2 - - 

43.1 - - 
43.3 - - 

- 
- 
- 
- - -  
- - -  

43.4 - - 
41.9 - - 
44.1 - - 
43.9 - - 
44.0 - - 
43.8 - - 
43.9 - - 
43.0 - - 

- - _  - - -  - _ _  13 
14 
15 
16  
17 
18 
19 
20 

- - - _  - - - - _ _  
- - _  - - - - - -  
- - -  - - - - - -  
- - _  - - -  - - -  
- - _  - - -  - - -  
- - _  - _ -  - - _  
- - -  - _ -  - - -  

TABLE 1. A summary of the experiments conducted and the paddle frequency 
of each. The dimensional period of each test is also shown 

the probe, which is quite critical. Accordingly, since the wavelength of these 
latter modes is small, a small variation in the height of the probe can result in 
large errors in the wave amplitude. 

Time-dependent behaviour of experimental and theoretical results 

Table 1 shows the different experiments which were done and the paddle fre- 
quency for each one. In  addition to this, the dimensional period is also shown. 

A characteristic of resonant waves, e.g. (3.16), i s  that at  the initial time the 
wave has a linear growth. The density amplitude, as a function of time, can be 
exmessed as 

Notice that this expression is the term which directly involves wot in (3.16). 
Also, the term which is proportional to z is not considered because the amplitudes 
in the lower part of the tank, where xlH < 1, cause the term proportional to z/H 
to be small compared with right-hand side of (5.1), which is proportional t o  t .  

The wave displacement can be written from (5.1) as 

4Fo n 
LH2n2/H2+ (2/L)2t' 

AZ = - 
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tlF, 

FIGURE 3. The displacement amplitude as a function of t/T, at different vertical wavenumbers 
and paddle amplitudes. The points denote the experimental values and the straight lines 
represent the theoretical values. ---, 0 ,  zo = 1.2cm, m = 3; -, x , zo = 0.6 em, rn = 4; 
-.- , A, z,, = 0-6cm, m = ti. Az = 4[z,,m/(ma+ l)]t/!!',. 

for m = 2 ,  remembering that Fo is the amplitude of the forcing stream function 
and also that its relation to the actual paddle displacement is 

Yo = (L/Tp)zo (5.3) 

where Tp represents the dimensional period. Then (5.2) can be rewritten as 

n t  
n +lTp 

AZ = 4xo 7 - when L = 2H. (5.4) 

Figure 3 shows the predicted amplitude (5.4) (straight lines) and the observed 
amplitudes (dots) as a function of t/Tp for different vertical wavenumbers and 
different paddle amplitudes zo. A linear growth behaviour is observed for about 
six or seven periods, after which the amplitudes level off. The wave has a large 
amplitude, and higher-order effects may account for this change. 

Finite amplitude effects 

Three different finite amplitude standing waves corresponding to vertical wave- 
numbers n = 3, 4 and 5 can be seen in figure 4 (plate 2). Experiments for n = 6 
and 7 were conducted but their discussion will follow later. The scale in the middle 
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FIGURE 6. Two stages of the standing waves’ growth for p2 = 3. (a) A regular pattern whioh 
is well described by the linear theory; t = 6 periods. (b )  The effect of horizontal advection, 
indicated by the mushroom shape; t = 12 periods. 

of the tank is marked at  intervals of 2.54 cm and the actual visualization in the 
pictures is through eight dye layers, each initially 3.7cm thick and equally 
separated by non-coloured layers, each 7 cm thick. 

The standing waves grow for a few periods as the linear theory predicts; the 
shape of the density pattern is sinusoidal and the frequency is one close to 
resonance. However, since the amplitude of the forcing was deliberately chosen 
to be large, the nonlinear effect predicted by (4.8) is noticeable in the experiment 
after only a few periods of oscillation. 

Figure 5 (a )  (plate 3) shows the wave shape after 20 periods corresponding to 
a vertical wavenumber of 3; the amplitude Az is about 8-75 cm and the shape of 
the density pattern is no longer sinusoidal. Notice also that the trough and crest 
are becoming flat. A similar effect can be observed in a solution obtained by 
numerically integrating a set of finite difference equations corresponding to  (2.8) 
and (2.9). Using the same boundary and initial conditions (2.10) and (2.11), the 



588 

10-1 
AZ 

10-2 

I .  Orlanski 

N 

222.3 71.59 41.67 30.39 23.60 19.29 16 31 14.13 T ( s )  
108 3 53.47 3550  26.57 21.23 17.67 15.14 

FIGURE 7. Fourier components for the conductivity response vus. the period; the main peak 
corresponds to the resonance period (46.42 s) and the secondary peak to the nonlinear inter- 
action (23.21 s). 

solutions described in the paper are for Re M lo5 and Pr = 500. Although other 
results are not shown, different values were used for the pararncters and in one 
casc an eddy type of variable viscosity was included. These results will appear in 
a forthcoming paper on the numerical simulation of internal gravity waves. The 
numerical procedure and computer program used was developed by Lipps (1971) 
for studies on convection in the presence of shear flows. Grid points are located 
such that Dx = &L and Dz = &H. This spacing gives a resolution of about 
thirty points in each direction over the dimensions of an internal wave resonant 
with the forcing. Observe that figure 5 ( b )  (plate 3) shows the pattern of the 
numerical solution with the flatness effect. 

The characteristic behaviour of the numerical solution can be described by 
the second-order term that affects the perturbed density field (4.8): the simple 
superposition of a single ellipsoidal cell given by the linear part 0, and a,, the 
second-order correction, which is a function of z and t only, thus modifying the 
density perturbation to a mushroom shape. In  figure 6 ( n )  we can see how the 
numerical solution for the perturbed density, after 6 periods, exhibits strong 
symmetry with a sinusoidal dependence in z (0, cc sin (377/H) z) .  After ten more 
periods, the horizontal advection of density becomes more important and, as 
expected, the mushroom shape results as shown in figure 6 (b ) .  Recall that this 
type of solution is the effect of the second-order terms (0, cc sin (6n/H)  2). This 
effect will try to flatten the isotherm. Finally, owing to horizontal advection, 
the heavier fluid will be carried over the lighter fluid, producing an unstable 
gradient of density that will produce overturning. This point will be elaborated 
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(4 (h) 

FIGURE 8. Sketch of the density and stream function for 
(a )  propagating and (a) standing waves. 

in the next section, where the breaking process is discussed. From the probe 
responses a Fourier analysis was made with respect to time, and the results show 
the presence of a peak a t  20 ,  for most of the laboratory experiments. An example 
is shown in figure 7, where the resonant period (experiment XII, 4, table I)  is 
46.42 s and the peak appears a t  23.21 s. This is in complete agreement with the 
second-order solution (4.6), in which the predominant term has a frequency of 20, .  

6 .  Breaking of standing waves 
The principal objective of this paper is to identify the processes which cause 

internal gravity waves in confined regions to break into sporadic patches of 
turbulence. We hope that this simple case will allow us to gain some insight into 
the more complicated phenomena relevant to CAT (clear air turbulence) in the 
atmosphere and DOT (deep oceanic turbulence) in the ocean. 

I n  laboratory experiments (Thorpe 1968; McEwan 1971) some types of breaking 
standing internal waves have also been observed. I n  this particular context, 
the expression ‘breaking ’ does not imply total collapsing of the wave, but rather 
an abrupt transition from the smooth shape of the wave to a more disturbed 
one in which higher wavenumbers are generated. 

A mechanism for the formation of the thermocline step structure (Orlanski & 
Bryan 1969), along with the related process of turbulence generation (DOT) 
in the ocean (Orlanski 1971), has been proposed in which these effects (which are 
less dependent on the local Richardson number and are affected more by the 
way in which the internal gravity waves become finite amplitude waves) axe 
the result of sporadic overturning associated with finite amplitude internal 
gravity waves. Unstable gradients of density may develop locally in the wave; 
accordingly, a criterion for the required critical amplitude, that is, 8pla.z 2 0, was 
derived. Under this condition, the horizontal advection must balance the local 
time change of density; pt 2: V, . Vp.  For a single wave, this condition is fulfilled 
if the horizontal velocity is larger than or equal to the horizontal component of 
the phase velocity of the wave ( I v , ~  3 IcPhl). I n  order to see the analogy between 
the breaking of propagating internal gravity waves and standing waves, let 
us consider figure 8. 

The stream function and density field of a propagating wave are shown in 
figure 8(a) .  The ellipsoids represent the stream function a t  one instant; the 
dashed sinusoidal curves represent the isopycnics which result from a linear 



590 I .  Orlunski 

- 3  - 1  1 3 
-2  0 2 

- u (cmjs) 

FIGURE 9. Horizontal velocity profile at x: = $5 as a function of height. The wavenumber 
for all cases is 5. A, t = 15 periods; x , t = 19 periods; 0 ,  t = 25 periods. 

theory, whereas the solid curves are the isopycnics which result from the non- 
linear interaction. The strong horizontal advection in parts of the wave tries 
to push heavier fluid over lighter fluid, causing an S-shape in the isopycnics as 
shown. The entire process is possible because the stream function and density 
field are not exactly in phase. This condition is only possible for waves that are 
slowly growing, as is discussed in Orlanski & Bryan (1969). However, for pure 
neutral propagating waves the density field and stream function are exactly in 
phase and density advection is zero. 

The stream function and density field are ninety degrees out of phase for 
standing waves as we can see in figure 8 ( b ) .  The stream function changes sign 
every half period. We may notice, however, that a similar distortion will occur 
in this case owing to the strong horizontal advection of the wave. The main 
difference here is that the front and rear of the wave will be distorted. It should 
also be pointed out that the velocity of the particles must be larger than the 
change in the wave field in order to produce unstable density gradients. In  such 
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FIUURE 10. Horizontal velocity as a function of height from the numerical model for the 
verticalwavenumber rz = 3. -, T = 168; ---, T = 228; ....-, T = 278; -e - ,  T = 290. 

a case, the horizontal velocity u, as in the case of propagating waves, is given 
approximately by w,/( 27rlL). 

In  the experiment, the tracers, which are very small pieces of plastic, were 
photographed over a certain time At (of the order of a tenth of the period), thus 
enabling the velocities to be calculated. The method is not particularly accurate 
when the time interval is a large fraction of the total period, nevertheless, it is 
a good means of obtaining a complete view of the flow. The amount of error in 
the velocities can be reduced if we account for the fact that there will be varia- 
tions in the velocity along the trajectory. 

Figure 9 shows the horizontal velocity profile at a fixed point (x = 4L) as 
a function of height at  three different times. For these cases the vertical wave- 
number is 5 (experiment XII, 4). Note that the complete tank height (77cm) 
is not shown in the graph because the pieces of plastic were not uniformly dis- 
tributed throughout the tank. The triangles correspond to  time t = 15 periods, 
before breaking, the crosses correspond to t = 19 periods, at breaking, and the 
circles to t = 25 periods, after breaking. The maximum velocity reached at the 
time of breaking was u 21 (w/2n)  L = 3-26 cm/s. 

Figure 10 is an analogous profile for the numerical solution when n = 3 .  
Similar features can be identified in figures 9 and 10, which let us draw two 
important conclusions. First, breaking occurs at the predicted amplitude, which 
implies gravitationally unstable processes. Second, after breaking, the amplitude 
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of the velocity exhibits no further growth, implying that the critical amplitude 
is the maximum amplitude of the waves. 

To estimate the amplitude for the density perturbation we shall use the 
vorticity equation (2.4). However, since the advection of vorticity is practically 
zero to higher orders (see equation (4.6)), the time change in vorticity will be 
given by 

and the maximum amplitude of the stream function to that order is 

(6.1) 

(6.2) 

= - [(mn/L)2 + (fin/H)21 wo@ = Wk 

111.lmax N ]c,hl/$ = ooLH/mnn2, 

where c,,~ is W / K .  It follows, then, that the maximum amplitude for the density 

This equation can be simplified if we remember that 

Substituting this into (5.3) yields 

Note that a similar result can be obtained if the condition pi = PB is used with 
the first-order solution of the density perturbation (3.16) and we neglect the 
higher orders. However, (6.4) is a more general result since no assumptions are 
made about the second-order density terms. Finally, the density expression (4.8) 
for the leading terms to a second-order approximation can be written as 

p N (p,/po) [x+6s in~zcoskxs inwt+~S2~sin2~xcos2wt i -O(S2/wt) ] ,  (6.5) 

where 6 = [( - l)nkq5Fo/Hw(k2+ wt, k = 2n/L and $ = nn/H. 

From the conditions of (6.4), Sis about of the order of I/+. Then the second-order 
terms in the density equation are Q of the first-order ones, so the former can be 
neglected. It should be pointed out, however, that this condition will not be 
true when p; is computed since the second and higher orders have larger vertical 
wavenumbers and may be quite significant. 

NOW, rewriting (6.5) to first order, we have 

From the expression (6.6) it can be shown that the maximum displacement be- 
tween crest and trough of the isopycnic is given by 

(A~)max = 8 C O ~  [AZmax $ 1 ;  (6.7) 

the value of the maximum displacement that satisfies the conditions of (6.7) 
is given by 

(Az/H)max N 0*739/nn. 
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FIGURE 1 .  Thc experimental apparatus and measuring devices: (a) the tank, ( b )  the paddles. 
( r )  the variable speed transmitter, ( d )  t h o  fluid coritainers, ( e )  the reccivrr, ( j )  thc motor. 
((1) an ax. bridge, ( h )  the condnctlvity probe. 
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PIGURE 5 .  Comparison between (fz) the a c t i d  cxxperiment and ( b )  the numerical experinicnt 
a t  the same wavenumber, illii\tIating L J N ~  flatness effert in the trough and crest of the wave\. 

ORLANSKI 



Plate 4 

VIcTuitic J 3. Convective. overturning i n  Lhe laboratot y experiment. AIL S-shape 111 1 1 1 ( ~  I O W ~ T  
part of the figure bvgiiw t o  fold, t l r i i i  producing t iirbulerice. 
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FIGURE 14. A seyumce of pictures showing the trajcctorles at four stages of the brenliirig 
of standing w a w s  for rt = 3 ( s t h e  text). ( a )  t = 360.5s. ( b )  t = 929.6s. ( c )  t = 1896-5s. 
(d )  t = 2221 s. 

ORLANSKI 



Breaking of standing internal gravity mees 593 

0.5 

0.4 

3 
4 

0.3 

0.2 

0.1 

I 1 I I I 
10 20 30 40 50 

T.N 

n = l  rz=2 r i = 3  n=4 n=5 n=6 n=7 

FIGURE 11. The critical amplitude as a function of the vertical wavenumber. ---, equation 
(6.8); - .-, (AzIH),, = 0.641nm; e, measured maximum displacements of the isopycnics; 
0, critical amplitude from numerical experiment. 

The comparison between the critical amplitude as a function of the vertical 
wavenumber n and the experimental results is shown in figure 11; the dashed 
curve is the expression (6.8) and the solid circles are the measured maximum dis- 
placements of the isopycnics. From the experiment, in all cases (n  = 3 to 7) the 
maximum amplitude of the wave occurs just before breaking. The open squares 
are the critical amplitude for the numerical experiment. In  the latter, the wave 
amplitude increases a little more ( N 5 %), but the solution a t  that point becomes 
unrealistic owing to the limited resolution. The data can be fitted by the (dashed- 
dot) curve (AZ/I&~ M 0.64/m; the nonlinear terms neglected in the density 
expression (6.6) may account. for the small differences between the two curves 

The structure of the density field at  the critical amplitude in the numerical 
solution, when n = 3, is shown in figure 12. Notice that in figure 12 (a) the solu- 
tion after it time of approximately 16 periods of oscillation shows a weak unstable 
density gradient just below the region of strong horizontal advection (for com- 
parison see figure 8 ( b ) ) .  In  figure 12 ( b )  we can see that the solution just one period 
later shows stronger regions of unstable stratification. Unfortunately, the 

and 
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FIGURE 12. The density field structure a t  the oritical amplitude from the numerical solution 
when n = 3. (a )  At the moment when unstable density gradients are observed; t = 16 periods. 
( b )  The result after one more period is shown; t = 17 periods. 

numerical model has a limited resolution which does not enable one to give 
an accurate description of the overturning process. 

One detail of convective overturninq in the laboratory experiment, for the 
same n, is shown in figure 13 (plate 4). (This picture was retouched in order to 
increase the contrast of the layers.) In  this picture we observe that when the 
density perturbation is a maximum a small region where the density gradient 
is unstable can be seen and then the density perturbation increases. A t  this point, 
the layer with the S-shape (see figure 12(b)) will start to fold, thus producing 
turbulence in that area of the wave with practically neutral density stratification. 
We can detect different behaviour patterns of the turbulence which are a function 
of the magnitude of the breaking. For example, if the regions are small, they 
tend to collapse into very thin layers which are eventually eliminated by dif- 
fusion. It is conceivable that this process is an explanation of the distortion in 
the standing waves which was found by McEwan (1971). On the other hand, 
larger regions will also collapse but they do interact with the mean wave. As 
a result of this interaction, a complete change in the large-wave characteristics 
suficient to offset the resonant balance that the wave has at  this point is produced, 
thus explaining the fact that when the waves start to break no increase in 
amplitude is observed. The effects are shown in figure 14 (plate 5). 
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In figure 14, four frames were put together, each showing the lower two-thirds 
of the tank. For this case n = 3, the period is 31-5s) N = 0.6031 s-l and the time 
exposure is 3 s. Now, in the first frame (figure 14 (a)), where t = 366.5 s or approxi- 
mately 12 periods, the cells are regular and symmetric. The tracers, in the 
centre of the tank, show strips of about 2.6cm, and since the time exposure 
is 3 s a vertical velocity of 0.9 cm/s can be estimated as well as the displacement 
AzlH = 0.120, which corresponds to a value very close to the maximum amplitude 
as shown in figure 11. The patches of turbulence slowly interact with the 
dynamics of the standing wave and, as we can see in figures 14 ( 6 )  and (c), strong 
asymmetries develop. These sporadic patches try to interact with the cell’s 
circulation as can be seen in figure 14(b). In  doing so, the small eddies move 
around over a horizontal surface along the tank and at  the end a secondary 
circulation builds up which covers the entire length of the tank. This is the case 
in figure 14(d), in which the structure can be described as layers of small eddies 
separated by strong jets. No vertical profiles of density were made at  this point; 
however, some profiles were taken a half hour after stopping the paddle. At  that 
time, the circulation was quite weak, but the profiles suggest the possibility 
that the layers formed by the small eddies had neutral stratification owing to 
strong mixing, whereas the layer with strong jets also had strong stratification. 
This type of circulation, as shown, is independent of both paddle frequency and 
wavenumber since similar circulations were found for other cases. We cannot be 
completely sure, however, that the tank walls are unimportant for this secondary 
circulation. The lack of resolution in the numerical model made a complete 
simulation of the secondary circulation impossible. However, some tendency for 
the asymmetry of the cell circulation was obtained when the numerical solution 
was perturbed close to the breaking amplitude with very small random dis- 
turbances a t  one instant. 

A noteworthy point is that, if we lookat the kinetic energy spectrum as a 
function of horizontal wavenumber, figure 14(a) will show a sharp peak at 
ko = 2rr/L, the resonant wavenumber. In  figure 14(b),  more energy will flow to 
the higher wavenumbers from the resonant wave Ic,. We may be inclined, 
intuitively, to relate this to any process that generates turbulence; however, in 
the end, these small eddies will tend to feed energy to the lower wavenumbers to 
build up the circulation shown in figure 14 (d). This process closely resembles the 
reversed cascade effect produced in two-dimensional turbulence. Perhaps, in this 
case, the stratification maintains the two-dimensionality of the flow. 

7. Dissipation of standing waves 
The damping effect for the free waves, after the forcing has stopped, can be 

measured as a function of time. In  most cases the amplitude Az of the salinity 
probe signal decreases exponentially with time. An example of this is shown in 
figure 15, in which the amplitude Ax is plotted against the number of periods of 
the free waves on a semi-logarithmic scale. The rate of damping is given by the 
slope of the curve, and it should be pointed out that only the waves excited close 
to resonance give a response similar t o  this one. However, waves with frequencies 

38-2 
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where q = q1 + qB. For B closed container qI and qB are given by 

I (7.4) 
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FIGURE 16. Non-dimensional damping as a function of the Reynolds number Re = w H 2 / y ~  
__ , theoretical curve derived from (7.6) 6~ = 1 ,  61 = 1. Experimental curves: ---, 
6~ = 0.5,61 = 1; .*.**, 6s = 0.5, 61 = 0.5; -.--, 6~ = 0.4, 81 = 1; -- --, 6s = 0.4,61 = 0.4. 

Substituting (7.4) into (7.3) 

T p d ( A z )  n3 
Az dt Re 
-- (7.5) 

where Re is the Reynolds number u2H/v ,  and n is the vertical wavenumber. The 
damping rate is not only afunction of the Reynolds numberthrough the frequency 
but also of the wavenumber n. Notice, however, that this dependence is only 
relevant in the interior dissipation term 1 + n2. The dissipation term due to the 
boundaries (HID + ( 2n2 + l)/(n2 + 1)) for values of n = 2,3,4 is practically a con- 
stant (HID + 2). In this case HID = 2.5 and therefore the constant equals 4.5. 

Now, considering the possibility that we may have turbulence in the boundary 
layers as well as in the interior, we can modify (7.5) to contain an eddy viscosity 
for the boundary layer and one also for the interior; however, the two are not 
necessarily equal. So we can define two parameters 8, = vlM/vg and 8, = vM/vI,  
which involve a ratio of the molecular and some eddy viscosity. Now (7.5) can 

Tp d(Az)  n38, ( l + n 2 ) + 4 - 5 ( 2 ) '  
Ax dt Re 

be written as 
--=- 

The non-dimensional damping observed is plotted in figure 16 vus. the Reynolds 
number and the theoretical curve (7.6) for different values of 6, and 6, also 
appears there. The results show damping larger than the molecular viscosity 
predicts (8, = 8, = 1). An estimate of an eddy viscosity equal to about 2 or 
3 times the molecular viscosity seems reasonable and fits the waves in which 
breaking is visible (solid circles). 
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8. Conclusion 
A solution to the transient behaviour of the resonant growing standing waves 

was found by using a perturbation expansion. The solution was compared with 
laboratory experiments as well as a numerical nonlinear solution of the same 
problem. The conclusions are as follows. 

(i) The transient behaviour and the nonlinear tendency of the standing waves 
are described well by the analytic expression. 

(ii) The numerical results describe the solution very well until the wave starts 
to break. 

(iii) From the laboratory experiment and the numerical results it can be 
concluded that the standing internal gravity waves break because of local 
gravitational instability a t  a critical amplitude close to the one predicted by the 
expansion theory. 

(iv) This amplitude seems to be the maximum amplitude that a wave can reach. 
(v) When the generation of turbulence is violent, the small eddies start to 

force a secondary flow characterized by layers of strong jets separated by patches 
of turbulence. 
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